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ABSTRACT
The implementation of  the Restriction of  Hazardous Substances 

(RoHS) European Union (EU) Directive in 2005 resulted in 
greater use of  pure tin as a surface finish for printed circuit boards 
and component terminations. The use of  pure tin by electronics 
component fabricators is understandable as they are inexpensive, 
require simple plating systems to operate and have reasonable 
solderability characteristics. A drawback of  pure tin surface finishes 
is the potential to form tin whiskers, which are a metallurgical 
phenomenon associated with tin rich/pure tin materials. Electronics 
used in high performance/harsh environment, such as avionics, 
typically have product life cycles that are measured in decades and 
therefore are much more susceptible to the potential long-term 
threat of  tin whiskers. Including lead (Pb) is a well-accepted method 
for minimizing the risk of  tin whiskers.  The GEIA-STD-0005-2 
“Standard for Mitigating the Effects of  Tin Whiskers in Aerospace 
and High Performance Electronic Systems” established the 
definition of  the term “Pb-free tin” as: pure tin or a tin alloy with 
<3% lead (Pb) content by weight. This investigation was conducted 
to assess the influence of  1% - 5% elemental Pb content in tin 
plating on tin whisker initiation and growth to determine if  the 
acceptable minimum amount of  Pb could be revised.  Results 
indicate that the current definition of  3% Pb content should be 
maintained.

INTRODUCTION
The implementation of  the Restriction of  Hazardous Substances 

(RoHS) European Union (EU) Directive in 2005 resulted in the 
introduction of  pure tin as an acceptable surface finish for printed 
circuit boards and component terminations. A drawback of  pure 
tin surface finishes is their potential to form tin whiskers.  The tin 
whisker metallurgical phenomenon is associated with tin rich/pure 
tin materials and has been a topic of  intense industry interest [1 - 6]. 
Figure 1 illustrates tin whiskers observed on a component lead and 
in an immersion tin surface finished plated through hole that was 
incorrectly plated due to a formulation error in the plating bath that 
prevented the deposition of  a sufficient amount of  bismuth.

Figure 1: Tin Whiskers a) on a Component Lead and b) in a Plated 
Through Hole

The acceptance and usage of  pure tin by the electronics 
industry component fabricators is understandable. Pure tin 
surface finishes are inexpensive, they have reasonable solderability 
characteristics, and their required plating systems are simple to 
operate. The commercial electronics segment, which uses the 
majority of  electronic components, often has product life cycles 
that are measured in years. In contrast, high performance/harsh 
environment electronics, such as those used in military/aerospace 
applications, typically have product life cycles that are measured 
in decades.  This longer product life increases the potential threat 
of  tin whiskers. The GEIA-STD-0005-2 “Standard for Mitigating 
the Effects of  Tin Whiskers in Aerospace and High Performance 
Electronic Systems” [7] was created to assist the harsh environment 
user segment with tin whisker mitigation. A definition for the term 
“Pb-free tin or pure tin” was established so that the industry was 
working from a standard baseline:
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“Pb-free Tin is defined to be pure tin or any tin alloy with 
<3% lead (Pb) content by weight. This means that some Pb-free 
finishes other than pure tin, such as tin-bismuth and tin-copper, are 
considered to be “Pb-free tin” for the purposes of  this standard”. 
[7]

Defining “pure tin” was necessary so that the electronics industry 
could establish tin whisker risk protocols against a known target 
value in terms of  soldering materials and processes.  As discussed 
in Ref. [7] the genesis of  the 3% Pb criteria for pure tin began with 
testing done at Bell Labs in the 1950s with continuing work to refine 
the approach.

Investigations [8, 9] have shown that pure tin surfaces can be 
“poisoned” with tin/lead solder, provided that the tin plating is 
replaced during the soldering process. With many components 
with physically short leads, such as chip resistors or capacitors, 
the soldering process consistently and repeatedly reduces tin 
whisker risk. However, the component lead geometry, solder paste 
deposit and component pad dimensions all factor into whether a 
component can be successfully poisoned by the soldering process. 
The criterion for solder poisoning is a minimum of  3% lead (Pb) 
(all alloy composition values shown in this paper are by weight) in 
the resulting finish on the entire component lead, per the GEIA-
STD-0005-2 definition.  Figure 2 illustrates two components, one 
of  which was successfully poisoned and one inadequately poisoned 
based on solder flow changing the original tin plating surface finish.

Figure 2: Solder Process "Poisoning", (a) - Acceptable, (b) - 
Inadequate (Note: The yellow arrow indicates the highest point of 
solder flow)

Pinsky reported, in an IPC PERM consortium round robin test 
program [10], that there is some variation in the solder wetting and 
coverage even on components that are routinely “poisoned” in 
automated soldering processes. An example of  these occurrences is 
the 0603 surface mount component that was soldered in a tin/lead 
solder paste as part of  the round robin testing program (Figure 3). 
The 0603 component achieved a 99.9% poisoning success rate, but 
there was the 0.1% chance that poisoning success was not achieved. 

Figure 3 shows metallurgical cross-sectional and scanning electron 
microscopy (SEM) analyses of  a 0603 component with poor 
wetting that did not meet the “3% Pb” rule, since resulting finish, 
after reflow, only achieved a 1.5% Pb content.

Figure 3: SEM-EDS Assessment of 0603 Component with Inadequate 
Solder Poisoning, increasing SEM magnification showing location of 
EDS measurement; adapted from [10] (Copyright IPC, reprinted with 
permission)

The IPC PERM consortium round robin test program results 
highlighted the fact that, since successfully achieving the 3% Pb 
minimum value is not guaranteed, a combination of  tin whisker risk 
mitigation methodologies should be considered. However, the IPC 
PERM consortium round robin test program results also raised the 
following questions:

•	 Is a lower % Pb content minimum value acceptable?
•	 Should an investigation be conducted to better characterize  

the validity of  the 3% Pb minimum value?

INDUSTRY PUBLISHED LITERATURE REVIEW
A review of  the industry published literature was conducted 

to understand the potential origin and evolution of  the 3% Pb 
minimum value used in the GEIA-STD-0005-2 specification. 
The initial investigations of  tin and zinc whisker phenomenon 
were published in 1951 by Bell Laboratory technical staff  [11]. 
Compton et al. [12] published early results of  an investigation on 
the influence of  base metals, plating bath composition, plating 
thickness, contamination and conditioning environment on whisker 
initiation/growth. Arnold and others [13-20] continued the whisker 
investigation by expanding into crystallographic orientation 
characterization, plating bath parameter influences, post plating 
treatments and other surface finish application technologies (i.e. 
vapor deposition, dipping, etc.) over the next 10 years. 

Arnold published data on “repressing the growth of  tin whiskers” 
in 1966 [21]. He reported that the elements that appeared to 
influence tin whisker initiation/growth were antimony, cobalt, 
copper, germanium, gold, lead and nickel. Of  those elements, Pb 
had the best results.  A 12-year study of  a Sn99Pb1 plated surface 
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finish revealed that, under 95% relative humidity (RH) conditions, 
only an occasional whisker was found and those whiskers had a 
maximum length of  20 mils.  Arnold concluded that “…tin alloys 
containing as little as 1% Pb are satisfactory substitutes for tin 
coatings…”. Britton published a comprehensive review paper 
covering 20 years of  International Tin Research Institute (ITRI) 
tin whisker research in 1974 [22]. Britton stated that the use of  Pb 
as an alloy element was effective in retarding and/or eliminating 
tin whisker initiation/growth. Britton found general agreement 
between his investigation results and Arnold’s published results [21], 
despite some differences in test parameters/conditions.

In 2011, two groups of  researchers published results on the 
influence of  % Pb on tin whisker initiation and growth.  Baated et 
al [22] investigated 100% Sn, Sn2Cu, Sn10Pb, Sn3.5Ag, and Sn2Bi 
surface finishes plated on component lead frames and stored at 
room temperature conditions. In several instances, the 100% Sn 
and the Sn2Cu surface finishes grew long whiskers within 24 hours. 
The Sn10Pb and Sn2Bi surface finishes grew tin whiskers less than 
0.2 mils in length after 420 days. The test results showed that Pb, 
Ag and Bi had a suppressing effect on tin whiskers. Sobiech et 
al [24] investigated the influence of  Sn10Pb and Sn20Pb surface 
finishes on tin whiskers initiation/growth on copper and iron lead 
frame materials under room temperature conditions for a 12-month 
period. The Sn10Pb and Sn20Pb surface finishes, for both substrate 
types, remained tin whisker free for the 12-month period. Zhang 
and Schwager [28] investigated the influence of  Sn60Pb40 films 
on tin whisker growth on copper surfaces/ambient conditions as 
a function of  storage time. They concluded that Pb prevented tin 
whisker growth due to the formation of  a uniform copper/tin 
intermetallic compound (IMC) layer. Jadhav et al [26] investigated 
the influence of  Sn90Pb10 plating on tin whisker initiation/growth 
using thermally induced stress methodologies. Their test results 
demonstrated that the Sn90Pb10 plating had a significant stress 
relaxation effect in comparison to 100% Sn plating and should 
reduce whiskers.

In 2013, two investigation reports, which focused on small Pb 
percentages, were published. Nielsen and  Woodrow [27] produced 
copper coupons with tin plating containing 1-3% of  the following 
elements: Cu, Ni, Co, Sb, Ge and Au. Table 1 lists the plating alloys 
and the weight percentages achieved on the copper coupons using 
inductively coupled plasma (ICP) analysis. Tin whisker inspection 
intervals were 4000, 8000, and 12000 hours while subjected to a 
conditioning environment of  50°C/50%RH. 

Table 2 illustrates results for the SnPb plated samples after 8000 
hours of  conditioning, with the majority of  observed tin whiskers 
in the 10-20 µm range for average number of  whiskers/cm2. 
Nielsen and  Woodrow noted that the whiskers appeared to be more 
like multi-faceted, cubic shaped filaments than typical tin whisker 
structures [27]. Figure 4 illustrates one of  the whiskers observed 
on the SnPb plating. The investigation concluded that plating that 
contained Au, Sb or Ge had the greatest tin whisker suppression 
effects.

Table 1: ICP Analysis Results for Weight Percent of Elements in 
Plating [27]

Table 2: Average Number of Whiskers/cm2 on SnPb Plating [27]

Figure 4: Multi-faceted, Cubic Shaped Filament Observed on SnPb 
plating After 8000 Conditioning Hours [27]

Jo et al [28] investigated the influence of  Pb additions to 
tin plating using electroplated copper on quad flat pack (QFP) 
lead frames for a range of  0 to 10% Pb with room temperature 
conditions over a 12-month period. The investigation results 
revealed tin whisker initiation/growth on the 100% Sn samples 
and only hillock structures on the Pb addition samples (Figure 5, 
Figure 6).

Figure 5: Whisker/Hillock Counts versus Lead (Pb) Content [28]
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Figure 6: Plating Sample Growth Morphologies after One Year [28]

The published literature indicates that Pb clearly has an impact 
on the initiation/growth of  tin whiskers for % Pb alloy percentages 
exceeding 10%. Additional data on whisker formation in aggressive 
temperature/humidity conditioning environments for surface 
finishes with Pb percentages below 10% would provide a better 
understanding of  tin whisker initiation/growth for electronic 
component configurations.

OBJECTIVE
The objectives of  the investigation were to:
•	 fabricate test samples with consistent internal stresses in low 

%Pb electroplated tin compositions,
•	 subject test samples to representative harsh environments of  

elevated temperature and humidity that tend to promote the 
formation of  tin whiskers,

•	 accurately quantify the amount of  tin whisker grown on 
the test samples as a function of  the time exposed to harsh 
environments, 

•	 determine the impact of  the test sample material and tin 
composition on tin whisker initiation/growth

•	 recommend whether any changes should be made existing 
criteria for Pb content to prevent tin whisker growth.

PROCEDURES
The test specimens selected for the investigation were 0.020-inch 

diameter by 6-inch-long wire comprised of  copper and Kovar. 
The wires were plated with a commercial tin plating solution by 
Forsite Inc. Plating for both wire materials were selected using 
solder ranging from 100% tin to 95% tin, in 1% Pb composition 
increments, with no prestrike plating metallization. A total quantity 
of  30 wires for each base metal and Pb content were produced. 
The final tin plating thickness on the copper wires was 120-200 
microinches and on the Kovar wires was 350-420 microinches.  
Figure 7 shows the plating system, which used a modified Hull Cell 
with 100% tin electrode and a plating distance of  4-5 inches. A 3-4A 
of  current was used on the 0.02 inch diameter x 6 inch long wires, 
leading to an overall average current density of  ~1 – 1.5 A/cm2.

Figure 7: Plating System and Steps

The plating of  very small diameter wires, in 1% Pb increments, is 
not an exact science so X-ray Fluorescence (XRF), using a Fischer 
XDAL XRF system, and Scanning Electron Microscopy Energy 
Dispersive Spectroscopy (SEM EDS), using a Hitachi SU3500 SEM 
system, assessment were both conducted to measure the actual 
% Pb values. Table 3 lists the measured % Pb values for the test 
specimens. Overall, there is good agreement in the % Pb values 
measured with the two methods, with a wider % Pb plating content 
variation being observed in the higher Pb content (4% Pb and 5% 
Pb) test specimens. Since the overall goal of  the plating process 
was to produce a % Pb range from 0% Pb to 5% Pb, these results 
demonstrate that the plating approach achieved the investigation 
parameter purpose. Additionally, the plating finish was relatively 
smooth with no major visible defects (Figure 8a).

Table 3: Copper and Kovar Test Specimen Plating Characterization

TEST SPECIMENS
Careful consideration was taken in the design of  the tin whisker 

test specimen. A wire bending fixture (Figure 8b) was built using 
additive manufacturing to allow wire to be consistently bent into a 
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center “pigtail” that had both compressive and tensile stress (Figure 
8c). The bending fixture also produced test specimen mounting feet 
that could be soldered to a copper/laminate disc (Figure 8d). The 
disc shape/dimensions were selected to facilitate SEM assessment 
with minimum handling and to provide a uniform electrical 
conduction path to avoid SEM specimen charging.

Figure 8: Tin Whisker Test Specimen: a) Wire Plated with Tin, b) 
Fixture for Bending Wire, c) Test Specimen after Bending, d) 4 Test 
Articles Soldered to  SEM Assessment Disc

In total, 360  wire test specimens were  fabricated for the study 
that included the two base metal types (copper and Kovar) and three 
conditioning intervals. Figure 9 shows the tin whisker test specimen 
groups when placed in the temperature/humidity chamber.

Figure 9: Tin Whisker Test Specimens

TEST SPECIMEN CONDITIONING PARAMETERS
A modified JESD201 test parameter matrix was followed for the 

wire specimens. The following test parameters were used:
•	 Chamber environmental parameters: 85°C / 85% RH, non-

condensing environment
•	 All test specimens introduced to the conditioning chamber 

at time zero
•	 Whisker inspection intervals: 3000, 6000 and 9000 hours
•	 Only designated test specimens were removed at a given 

inspection interval with chamber interruption duration of  
20 seconds

•	 Scanning Electron Microscope conducted for each inspection 
interval

INSPECTION METHODOLOGY
A sample set, including the full range of  % Pb content copper 

and Kovar wires, was removed from the chamber at each of  the 
three inspection intervals and documented with SEM imagery.  
Following this, SEM images were assessed to characterize the 
whisker population on each sample. A MATLAB code was 
created to define five non-overlapping squares of  40,000 pixels, 
which represented 7.3 square mil (4730 square micrometers) on a 
SEM image.  These five square were randomly placed on a 300X 
magnification SEM image (see Figure 10). 

Figure 10: MATLAB Determined Tin Whisker Analysis Regions (5 
squares)

Using the randomly placed analysis regions, tin whisker density 
data were collected by counting and recording the number of  
whiskers visible within in each analysis square (defined by the outer 
edge of  the red lines). If  any portion of  a whisker was present in an 
inspection area, it was included in the count. Up to ten tin whiskers 
were individually counted in each area.  If  more than ten whiskers 
were observed in a given area, that area was recorded as having more 
than ten whiskers. The use of  randomly placed analysis regions and 
using the same individual to count the tin whiskers helped to reduce 
the overall variation/bias in the investigation. Figure 11 and Figure 
12 illustrate two examples of  tin whisker data collection, with oval 
shapes denoting counted tin whiskers.
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Figure 11: 98%Sn/2%Pb Kovar Wire Specimen with High Tin Whisker 
Density 

Figure 12: 96%Sn/4%Pb Copper Wire Specimen with Low Tin Whisker 
Density

TEST RESULTS
The average number of  whiskers per sample group for the copper 

wires are shown in Table 4 and the average number of  whiskers per 
sample group for the Kovar wires are shown in Table 5. 

Table 4: Copper Wire Tin Whisker Averages

Table 5: Kovar Wire Tin Whisker Averages

DISCUSSION/CONCLUSION
The samples taken after 3000 hours in the conditioning chamber 

were the first to be examined.  These results are  shown in Figure 
13, in which the y-axis expresses the average number of  whiskers 
in the inspection area and the x-axis corresponds to the target tin 
percentages present on the wires. For the copper wires, the data 
do not indicate a correlation between Pb content and tin whiskers 
initiation after 3000 hours. However, the Kovar samples do appear 
to show a trend with the lower percentages of  tin (95%-97%) 
exhibiting fewer whiskers than htose with higher tin percentages. 

Statistical t-tests were conducted on the data with those 
measurements determined to have more than 10 whiskers given a 
value of  11.  These showed no statistically significant effect of  Pb 
content on the number of  observed whiskers for the copper wires.  
However, with the Kovar wires, there was a statistically significant 
difference (>95% confidence level), in that more whiskers occurred 
on samples with 98-100% tin than on those samples with 95-97% 
tin.

Figure 13: Results for Inspection after 3000 Hours Exposure

As the time in the conditioning chamber increased to 6000 hours, 
the average number of  whiskers for the copper wires remained low 
and consistent throughout the differing tin purities.  As with the 
samples at 3000 hours, the copper wires did not show a statistically 
significant impact of  surface finish lead content.  However, a t-test 
of  the Kovar data again showed a statistically significant difference 
between the data for 95-97% tin than the 98-100% tin samples.
The corresponding graph of  the average data with one standard 
deviation error bars is shown in Figure 14.
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Figure 14: Results for Inspection after 6000 Hours Exposure 

The trends changed slightly in the results after 9000 hours in 
the conditioning chamber. The average number of  whiskers in the 
inspection areas increased for all tin purity levels and, unlike in the 
earlier results, the copper wires with lower Pb content appeared to 
have more whiskers.  In the 9000-hour data, both the copper and 
Kovar wires with 98-100% Sn had more tin whiskers than samples 
with 95-97% Sn, to a statistically significant effect (confidence level 
>99%).  Figure 15 shows the upward trends in  the average number 
of  tin whiskers with increasing levels of  tin for both base wire 
material types.

Figure 15: Results for Inspection after 9000 Hours Exposure 

Figure 16 shows the same data as the previous figures, but with 
conditioning time instead of  tin content used as the independent 
variable.  This figure repeats the same data but places them into 
different sized bins.  The top figure shows results for each of  the 
nominal tin% content that were tested at levels of  95, 96, 97, 98, 99 

and 100% (i.e., 1% range).  The middle figure groups data together 
as 95-96%, 97-98%, and 99-100% tin (2% range).  The final figure 
compares data in the 95-97% tin content to those in the 98-100% 
level.  This last plot (Figure 16c) clearly illustrates the difference 
in the average number of  whiskers with higher tin content (98-
100%) than in the lower tin content (95-97%), i.e., 3% range.  For 
Kovar this difference was seen after each level of  conditions but 
with copper, this difference was only evident after 9000 hours of  
conditioning.  

Figure 16: Average Whisker Data vs. Conditioning Time, Grouped by 
Different Tin Content Ranges: a) 1%, b) 2%, c) 3%

The specific mechanism that led to the Kovar samples being more 
prone to tin whiskers was not established in this study. One possible 
explanation is that the higher coefficient of  thermal expansion 
(CTE) mismatch between the plating and the Kovar, as compared 
to copper, likely increased stresses within the tin plating. Also, most 
of  the test results showed a small, but noticeable, reduction in the 
number of  tin whiskers occurring in 100% tin as compared to 99% 
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tin.  This is somewhat counterintuitive; one would expect that the 
most pure tin finishes would be most prone to tin whiskers.  It is 
possible that the presence of  trace amounts of  Pb induced some 
additional stresses in the plating that promoted whisker initiation.  
Also, the analysis approach that limited measurements to no more 
than 10 whiskers in a given reading could have slightly biased the 
average values if  the 100% tin data actually included some samples 
that had measurement squares with substantially more than 10 tin 
whiskers.

These investigation results differ from those of  Arnold, which 
found that as little as 1% Pb was sufficient to prevent tin whiskers 
[21]. A number of  investigation variables could account for the 
results differences, including the tin plating bath composition, 
plating process parameters, substrate conditions, etc. 

Two obvious differences in the studies are the test vehicle 
geometry and the plating thickness. Arnold’s work primarily used 
flat coupons, in contrast to the 0.020-inch diameter wires used in 
the current investigation. This difference in the substrate geometry 
likely influenced the magnitude of  local plating stresses; residual 
stresses within solder are widely recognized as having a tendency 
to initiate tin whiskers. In addition, Arnold utilized a tin plating 
thickness of  200 microinches in much of  his work in contrast to the 
tin plating thickness of  120-200 microinches that was used in test 
samples in this investigation. Many prior researchers have observed 
that thinner tin plating thicknesses are more prone to tin whisker 
initiation. 

Since Arnold did not provide detailed information on the 
statistical basis of  his conclusion, it is not possible to conclusively 
determine the reasons for, or the statistical significant of, the 
differing conclusions between this study and his recommendation 
of  a 1% Pb minimum tin plating content. Future researchers could 
use similar procedures as those used in this test but with flat test 
vehicles more similar to those used by Arnold to determine the 
degree to results were affected by plating stresses. Those results 
would primarily be relevant for a fundamental understanding of  
tin whisker initiation. They would, however, have limited practical 
application since the high plating stress regions at lead bends are the 
primary areas of  concern for tin whisker avoidance.

The investigation results using the copper and Kovar wires with a 
0%-5% Pb content range validates the 3% Pb minimum tin plating 
content, which the industry currently recognizes as an acceptable tin 
whisker risk mitigation approach, is acceptable. 

In conclusion, the investigation does not support a revision to 
the 3% Pb minimum tin plating content is currently used by the 
electronics industry as a tin whisker risk mitigation metric.
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