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ABSTRACT

The Aerospace & Defense (A & D) industries maintain a high
level of interest in the expansive amount of work performed in
developing and qualifying Pb-free solder alloys. The three main
areas of interest continue to be thermal cycle, mechanical shock,
and vibration. The past twenty years have seen an unprecedented
increase in alloy development such that the concepts of “generations
of solders and “families of solders” have been coined to help
manage the numerous individual alloys on the market today. This
paper will discuss work done with Pb-free solder alloys, many
with the addition of constituents focusing on varying property
enhancements. The purpose is to provide a “snap shot” summary
of progress to date and relate perspectives both as advantages
and concerns solely in a constructive manner to aid researchers in
planning their next steps in development and qualification of these
alloys.

INTRODUCTION

The European Union RoHS (Restriction on the use of hazardous
substances) Directive was the driving force in the electronics
industry for the conversion from manufacturing with eutectic
tin-lead (63Sn37Pb) solder to manufacturing with Pb-free solder
[1]. The initial implementation for the high volume, consumer
electronics market was mandated in 2006. As the high-volume
market segments transitioned to Pb-free manufacturing, high
reliability electronic equipment suppliers continued to manufacture
and support tin-lead (SnPb) electronic products by using the
European Union Pb-in-solder exemption. In parallel, considerable
research was being conducted to evaluate the quality and reliability
of Pb-free electronic assemblies. As exemptions neared expiration,
high reliability manufacturers in telecom, medical, and automotive
markets developed the confidence to convert many of their
products successfully to Pb-free manufacturing. However, the
acrospace & defense (A & D) industries that have characteristically
stricter mission critical reliability requirements, continue to widely
use SnPb solder manufacturing processes.

The A & D industries recognized the worldwide supply
chain implications imposed by implementation of the RoHS
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Directive. They have been engaged in a joint endeavor to survey
all technological aspects of Pb-free solder manufacturing in
anticipation of a measured and systematic conversion to Pb-free
manufacturing, The overall objective is to develop strategies for
reliability risk assessments and supply base challenges specific to the
industries’ rigorous requirements and unique environmental service
and storage conditions. Most of these conditions and requirements
consist of various combinations of thermal cycling, thermal shock,
vibration, and high strain rate mechanical shock.

These efforts have resulted in a technology assessment and
gap analysis of the most widely used Pb-free materials to enable
development of strategies and tools needed for risk mitigation. A
considerable amount of supporting information can be found in
the open literature on identification of the risks, potential failures
and shortfalls if the risks are realized. Many of the technical papers,
handbooks, standards, and specifications that are referenced in this
paper can be used as comprehensive guidance and recommendations
to mitigate these risks [2-5].

Designs continue to evolve in complexity which increases
reliability risks in aggressive A & D operating environments. The
technology assessment cites solder joint fatigue as an important and
increasing area of risk. Thermal fatigue requirements always have
been a priority for the products of many high reliability end users [6].
Pb-free solder alloy development is continuing to evolve to address
the changing requirements. The so-called third generation family of
commercial solder alloys has emerged mostly driven by the dramatic
increase in electronic content in automobiles [6-9]. The goal of
these solders is to provide alternatives to the ubiquitous second
generation SnAgCu (SAC) alloys such as SAC305. While many of
these new alloys are known to have exceptional performance in
thermal cycling, very little is known about their performance in
thermal shock, vibration, and mechanical shock. None of these
Pb-free alloys, including SAC305, have been proven to satisfy all
the complex A & D requirements. Furthermore, with the number
of high-performance Pb-free alloy offerings continuing to increase,
assessing and managing their performance is a challenge.

The purpose of this paper is to summarize the current status
of alloy development and performance in relation to A & D
requirements. Advantages and concerns are discussed to aid
researchers in planning next steps in development and qualification
of these alloys in high-performance products and systems.
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If the scope of this discussion is limited to the Defense “subset”
of A & D products, the four major petformance/ service conditions
are thermal cycle, thermal shock, vibration, and mechanical shock.
Most real-life applications consist of varied combinations of
these conditions, e.g combined thermal shock/vibration in a jet
aircraft, combined thermal shock/vibration/mechanical shock in
a rocket, combined vibration/mechanical shock in a HMMWV
(High Mobility Multi-purpose Wheeled Vehicle), etc.  Specific
requirements for these individual conditions originate from multiple
sources: military, federal, and industry specifications/standards.

The following sections provide information to help the reader
understand the challenges of implementing Pb-free technology
First to be discussed is the
three current categories or generations of Sn-based Pb-free solders.

into high performance electronics.

This will also include an extended discussion on the effects of
various alloying elements and high-performance reliability test
results. In the next section, a summary of high-performance test
data is presented to comparing the new alloys with benchmarks.
In the third section, the sources of the stringent defense service
conditions are presented along with comparisons of solder alloys
against the defense requirements. A final section will combine all
information and provide a summary of concerns as well as potential
advantages to these solder alloys.

EVOLUTION OF PB-FREE SOLDER ALLOYS

Since the implementation of the RoHS Directive in 2006
[1], there have been significant commercial Pb-free solder alloy
developments. Alloys have evolved predominantly through
experience gathered in volume manufacturing and the deployment
of a variety of Pb-free products of increasing complexity. This has
resulted in an increased number of Pb-free solder alloy offerings
in addition to the first generation, high Ag content, near-eutectic
Sn-Ag-Cu (SAC) alloys that replaced the eutectic SnPb solder
alloy [10]. Second generation, lower Ag alloys were developed and
introduced to address the shortcomings of first-generation SAC
alloys, such as poor mechanical shock performance, higher cost,
and other technical risks. Third generation, high-performance
commercial alloys are emerging as Pb-free manufacturing becomes
pervasive, designs continue to evolve in complexity, and operating
environments become increasingly more aggressive [11].

Thermal fatigue requirements are a priority for the products of
many high reliability end users [12]. Solder joints age and degrade
during service and eventually fail by the well-known wear out
mechanism of thermally activated solder fatigue (creep fatigue) [13].
Solder fatigue is recognized as the major wear-out failure mode and
major source of failure for surface mount (SMT) components in
electronic assemblies [14].

There are limited reliability test data in the literature for the family
of third generation, high-reliability or high-performance solder
alloys. A comprehensive study of the thermal fatigue performance
of third generation solder alloys was initiated in 2015 by high
reliability end users and solder suppliers from the International
Electronics Manufacturing Initiative iINEMI) consortium [3]. This
group started working in 2008 to fill the gap in knowledge
associated with thermal fatigue resistance of first and second
generation, Sn-based, Pb free solder alloys [10, 12, 15-26]. The
emergence of third generation Pb-free solder alloys provided the

opportunity to apply the methods and experience from the earlier
study to evaluate thermal fatigue performance of this new family of
high-performance alloys. Findings from this current study began to
emerge in 2018 [6, 7, 27, 28].

Alloy Development, Requirements, and Metallurgy

The Sn-based, SAC alloys are more resistant to thermal fatigue
than the eutectic SnPb alloy, but they have reliability limitations at
higher operating temperatures [29]. During solidification of SAC
solders, the Ag and Sn react to form networks of Ag.Sn precipitates
at the primary Sn dendrite boundaries [30, 31]. These intermetallic
precipitates are the primary strengthening mechanism in SAC
solders [30-32]. During thermal or power cycling and extended high
temperature exposure, the Ag3Sn precipitates coarsen and become
less effective in inhibiting dislocation movement and slowing damage
accumulation. Precipitate coarsening leads to local recrystallization,
crack initiation, global recrystallization, and crack propagation. This
pattern of microstructural evolution is characteristic of the thermal
fatigue failure process in these Sn-based Pb-free alloys and was
described originally in detail by Dunford et al in 2004 [33]. Figure
1 shows scanning electron micrographs illustrating coarsening of
the Ag,Sn precipitates in SAC305 solder caused by thermal cycling.

SAC305 after thermal cycling

Figure 1: Scanning electron micrographs illustrating Ag,Sn
intermetallic precipitate coarsening that precedes recrystallization
and crack propagation during thermal cycling of SAC305. [Copyright
SMTA]
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The motivation for development of third generation Pb-free
solders is the dramatic increase in electronic content in automobiles.
Many automotive control modules, sensors, and components are
mounted in areas that experience high operating temperatures, and
rapid thermal and power cycling, in combination with vibration and
shock [11]. SAC alloys cannot satisfy the reliability requirements for
these use environments.

To address the requirement for higher temperature performance
in a commercial Pb-free solder alloy formulation, a working group
of solder suppliers, end users, and academic researchers was formed
to develop an alloy solution [34, 35]. The output of this working
group was the initial third generation, commercial Pb-free alloy
identified as Innolot or 90iSC [36]. The Innolot alloy is based on
the ternary SAC387 alloy but contains major alloying additions of
bismuth (Bi) and antimony (Sb), along with a microalloy addition
of nickel (Ni).

The need for solder alloys with better higher temperature
performance alloys has resulted in the development of many new
commercial Pb-free solder alloys. These alloys are based on the
SAC system but have major and micro alloying alloy additions
Many higher
temperature applications have requirements for increased resistance

to promote better high temperature performance.

to damage from high strain rate mechanical loading, in addition
to providing superior resistance to thermal fatigue damage. These
alloys are referred to as high-performance solders because they are
targeted for applications with aggressive or harsh use environments.

A partial list of high-performance alloys is provided in Table
1. Many of these alloys are included in the iNEMI consortia
investigation [11]. That test matrix also contains SAC305 as the
performance baseline alloy. The table shows that Bi is the alloying
element used most pervasively, which is consistent with the
attention given to Bi in the Pb-free alloy literature [29, 34, 37, 38-
44]. The metallurgical fundamentals for alloying are discussed in
the subsequent paragraphs.

Table 1: Nominal solder compositions for high-performance solder
alloys.

Tradenames and Nominal Composition (wt. %) of High Reliability Solder Alloys
Alloy Developer Sn | Ag | Cu| Bi|Sb| In other

405Y Inventec 95.5| 4.0 | 0.5 0.05 Ni; Zn

Cyclomax (SACQ) Accurus 92.8| 3.4 | 0.5|3.3

Ecalloy Accurus 97.3 0.7|2.0 0.05 Ni

HT1 Heraeus 95.0) 25| 0.5 2.0 Nd

Indalloy 272 Indium 90.0| 3.8 | 1.2|1.5(3.5

Indalloy 277 Indium 89.0| 3.8 | 0.7|0.5|3.5]| 2.5

Indalloy 279 Indium 89.3 3.8 | 0.9 5.5/ 0.5

Innolot Heraeus 91.3| 3.8 | 0.7|3.0|1.5 0.12 Ni

LF-C2 Nihon 92.5| 3.5 | 1.0|3.0

M794 Senju 89.7| 3.4 | 0.7|3.2|3.0 Ni

M758 Senju 93.2| 3.0 | 0.8]3.0 Ni

MaxRel Plus Alpha 91.9| 4.0 | 0.6|3.5

PS48BR* Harima Bal. | 3.2 |0.5]|4.0(3.5 Ni, Co

REL22* AlM Bal. | 3.0 | 0.7|3.0|0.6 0.05Ni; other

REL61* AIM Bal. | 0.6 | 0.7|2.0

SBBNX Koki 89.2| 3.5 | 0.8|0.5 6.0

SN100CV Nihon 97.8 0.7(1.5 0.05Ni

SN100CW1 Nihon 95.8 0.7/1.5]2.0

Violet Indium 91.25(2.25| 0.5]6.0

Viromet 347 Asahi 88.4| 4.1 | 0.5 7.0

Viromet 349 Asahi 91.4| 41| 0.5 4.0

*Nominal values; actual composition proprietary
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Metallurgical Considerations

The addition of Ag strengthens Sn and improves the creep
resistance of the SAC solder by precipitation hardening (Figure
1). Other alloying elements improve the creep resistance of
SAC solder by means of two other well-known metallurgical
strengthening mechanisms, solid solution hardening and dispersion
hardening. The introduction of solute atoms into solid solution of
a solvent-atom lattice invariably produces an alloy that is stronger
than the pure metal [45]. Figure 2 shows a simplified schematic
of substitutional solid solution strengthening, Substitutional or
interstitial solute atoms strain the lattice and dislocation movement,
or deformation is inhibited by interaction between dislocations and
solute atoms incorporated into the 3-Sn lattice.

Small Solute atom

Large solute atom

\B-Sn lattice

Figure 2: A simple schematic illustrating lattice distortion due to
substitutional solute atoms. [Copyright SMTA]

If solute atoms precipitate from solution dutring thermal excursions
in service, the solder alloy may strengthen by dispersion hardening.
Dispersion strengthening occurs when insoluble particles are finely
dispersed in a metal matrix. Typical dispersion strengthened alloys
employ an insoluble, incoherent second phase that is thermally
stable over a large temperature range (Figure 3) [40]. For Sn-based
solder alloys, the strength could be derived from a combination of
increased solid solution strengthening at higher temperatures due
to increased solubility, and dispersion strengthening that would
supplement the solid solution effect at lower temperatures where
solubility has decreased.

Solid Solution
Strengthening

Dispersion
Strengthening

Figure 3: A simple schematic comparing solid solution (left) and
dispersion strengthening (right). [Copyright SMTA]

The development of Innolot demonstrated that substitutional
solid solution strengthening can further improve resistance to creep
and fatigue at higher temperatures in Sn-based, Pb-free solders [34].
The hypothesis is that solid solution and dispersion strengthening
not only supplement the Ag Sn precipitate hardening found in SAC
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solders but continue to be effective once precipitate coarsening
reduces the effectiveness of the intermetallic Ag,Sn precipitates
[37].

The two elements used most often to improve high temperature
properties in commercial, high-performance, Sn-based solders are
Bi and Sb. The element Indium (In) is used to a lesser extent, in
part due to its high cost. Bi and In, when used as major alloying
elements, also reduce the melting point of most Sn-based solder
alloys, while the addition of Sb tends to increase the melting point
[33]. These additions result in modified SAC alloys with off-eutectic
compositions, non-equilibrium solidification, and significant melting
or pasty ranges [47-49)].

Many third generation Pb-free solders are being commercialized,
but the concept of using major element alloying to improve
mechanical properties or to alter melting behavior is not novel.
Formulations incorporating Bi, Sb, and In into basic Sn-Ag or
Sn-Ag-Cu cutectics were studied by the NCMS consortium of
industrial partners in 1997 [47]. The National Institute of Standards
and Technology (NIST) and the Colorado School of Mines began
documenting the properties of those alloys in 2002 [48]. When the
NCMS study was conducted, it was considered comprehensive,
but the thermal fatigue segment of the work ultimately was limited
because the work predated the development and widespread
introduction of area array technology. A more recent, general
discussion of the effects of alloying on solidification, melting
behavior, and properties can be found in reference [49].

Antimony (Sb) Additions to Tin (Sn)

The binary Sn-Sb phase diagram in Figure 4 indicates solubility
of Sb in Sn of approximately 0.5 wt. % at room temperature to
1.5 wt. % at 125 °C [52, 53]. Thus, some contribution could be
expected from solid solution strengthening of Sb dissolved in Sn-
based Pb-free solders [34].
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Figure 4: The Sn-Sb binary phase diagram. [Phase Diagram Credit:
Max Hansen, Constitution of Binary Alloys]

Alloying with Sb may improve performance through other
strengthening mechanisms. Studies by Li et al show that Sb slows

the growth rate of Cu, Sn, intermetallic compound (IMC) layers at
attachment interfaces [52, 53]. Fast interfacial IMC growth on Cu
surfaces tends to produce irregular and non-uniform IMC layers.
This can lead to reduced mechanical reliability by inducing fractures
at IMC interfaces or through the IMC in drop/shock loading [54].

Figure 4 also shows that Sb can form multiple different
intermediate phases or IMCs with Sn (Sb,Sn,, SbSn, Sb Sn,, Sb.Sn,,
and SbSn)) in the bulk solder [50]. Lu et al. [55] and El-Daly et al.
[56] identified SbSn intermediate phase precipitates less than 5um
in size and distributed throughout the Sn dendrites. Beyer et al.
show that Sn.Sb and SnSb alloys have increased shear strength
and ductility compared to conventional SAC solders and maintain
their shear strength with good ductility after isothermal aging
[57]. El-Daly suggests Sb also can improve creep performance
and tensile strength [58]. He found SbSn precipitates within the
Sn dendrites, unlike the well-known SAC AgSn mechanism,
where the precipitates form at the Sn dendrite boundaries. El-
Daly suggests the SbSn precipitates work to resist recrystallization
by strengthening the Sn dendrites [59]. Recently Belyakov et al.
have shown that SbSn forms within the Sn dendrites and at the
Sn boundaries in a SAC-based alloy. They also found SbSn at
recrystallized Sn boundaries after thermal cycling and assumed that
the SbSn precipitates resist recrystallization by strengthening the
Sn dendrites as well as strengthening the boundaries in the same
manner as the Ag Sn precipitates [60, 61].

Indium (In) Additions to Tin (Sn)

The binary Sn-In phase diagram is shown in Figure 5. While
there is some disagreement over the solid solubility of In in Sn, a
reasonable estimate is ~7 wt. % at room temperature and as much
as 12 wt. % at 125 °C [50]. Because of its range of solubility in Sn,
In has been explored as a solid solution strengthening agent in Sn-
based Pb-free solders [62, 63]. The equilibrium diagram shows that
In forms two intermediate phases (8 and y) of vatiable composition
with Sn [50] but does not appear to form any true stoichiometric
compounds with Sn.
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Results from multiple solder alloy studies indicate that Indium
(In) additions can improve drop and shock resistance by slowing
the growth of interfacial IMC layers. Yu et al. report improved
drop [64] and thermal shock [65] performance by adding as little as
0.4% In, and Amagai et al. report improved drop performance at
ot below 0.5 % In [66]. Hodulova et al. show that In slows growth
of Cu,Sn and that a hybrid IMC phase Cu,(Sn, In), forms [67].
Sharif also observed the formation of the Cu,(Sn, In), IMC as well
as formation of (Cu, Ni),(Sn, In), on Ni substrates [68], and these
IMCs also could be found in the bulk as well as the interfaces. In
these hybrid IMCs, In substitutes for Sn which fundamentally is
different than the common modified IMCs (Cu, Ni) Sn, or the (Ni,
Cu),Sn, where Cu and Ni exchange.

Other reactions occur when In is added to SAC-based solders
that complicate the ability to understand the influence of In content
on reliability. Belyakov et al. reported {-Ag, Ag/In,, Auln,, y-InSn
and InSb in the bulk solder of ball grid array solder spheres and
packages with Au final finishes. The spheres contained 6 wt. % In
in the SAC-based alloy spheres [69] . In a study by Chantaramanee
et al. additions of as little as 0.5% In or Sb in combination with
In, was found to promote formation of Ag,(Sn,In) and SbSn [70].
They reported that small precipitates reduced the Sn dendrite size
by 28%, but they were unable to determine the relative influence of
In versus Sb on this reaction. With alloys containing In of the order
of 10 %, Sopousek et al. found that some of the Ag.Sn transforms
to Ag,(Sn,In) and AgSn [71]. These observations are consistent
with the Ag-Sn binary phase diagram that shows Ag In, Ag In, and
Agln, [46]. Wang et al. reported that an addition of 1% In caused
larger or coarser Ag Sn precipitates [72]. This is a very interesting
observation, since Ag Sn precipitate coarsening (larger precipitates
at time zero) is expected to reduce thermal cycling reliability. In
principle there is a large solid solubility of In in Sn, but the effective
In content in a SAC-based solder may be diminished by interactions
with other elements during the formation of multiple phases.

It must be noted that many of the studies were conducted using
laboratory bulk solder samples with microstructures atypical of
microelectronic solder joints. Some of the studies also included
more than one significant alloy addition [e.g.,, 70], which makes it
difficult to isolate effects due to individual alloying elements. The
work by Wada et al [62, 63], while it includes tensile testing with
relatively large, bulk samples, also includes thermal cycling and
drop testing with surface mount components. Their microstructural
analysis included X-ray diffraction where they found InSn,, In Ag,,
Ag,(Sn, In), and possibly «-Sn in addition to B-Sn. Wada concluded
that the optimum ductility and reliability was achieved with an In
content of 6 wt. %.

Bismuth (Bi) Additions to Tin (Sn)

The binary Sn-Bi phase diagram in shown in Figure 6. The
solubility of Biin Sn is approximately 1.5 wt. %0 at room temperature
and increases to almost 7 wt. % at 100 °C room temperature, and as
much as 15 wt. % at 125 °C [50]. There is virtually no solubility of
Sn in Bi, and no intermediate phases or intermetallic compounds
(IMC) are found in the Sn-Bi system.
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Figure 6: The Sn-Bi binary phase diagram. [Phase Diagram Credit:
Max Hansen, Constitution of Binary Alloys]

Data from multiple studies show that Bi improves the mechanical
properties of Sn and SAC solder [27, 34, 37-44, 73-78]. Vianco
[30, 31] and Witkin [34, 66-68] did extensive mechanical testing
and microstructural analysis and discussed the dual strengthening
mechanisms of Bi in solid solution and Bi precipitated within Sn
dendrites and at Sn boundaries. Delhaise et al. [77] reported results
from their study of the effects of thermal preconditioning (aging)
on microstructure and property improvement in an alloy containing
6 wt. % Bi (Violet alloy in Table 1). They hypothesize that strain
from Bi precipitation induces recrystallization and increases the
amount of Sn grain boundaries which in turn, become pinned by
the Bi precipitates at those boundaries to resist creep deformation.

The results from fundamental studies by Vianco [38, 39] and
Witkin [42, 74, 75] leave no doubt that Bi additions have a
positive effect on the physical properties of Sn and Sn-based
solder alloys. However, those studies used cast, bulk alloy samples
and it is uncertain if those results can be scaled effectively to
smaller, microelectronic solder joints. Nishimura et al. for example,
recommend a maximum Bi content of only 1.5 wt. % (Figure
7a) because of the uncertainly that the alloying effect can be
sustained as the microstructure evolves in response to the thermal
Delhaise has shown that the Bi
distribution and microstructure depend on solidification conditions

cycling in normal service [44].

and subsequent thermal exposure, which ultimately determine
the relative contributions of Bi to solid solution and dispersion
strengthening (Figure 7b). Furthermore, it is possible that adding
enough Bi to take advantage of the Bi solubility limit at higher
temperatures may have a negative effect because Bi does not
necessarily precipitate homogeneously. Clustering of Bi is known
to occur [77] and in the extreme case, stratification or segregation
induces brittle behaviour [79, 80].
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(lower) with the 6 wt. % Bi alloy (Violet), from Delhaise [77].
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EVOLUTION OF PB-FREE PERFORMANCE TESTING
DATA

There have been countless tests conducted on Pb-free solder in
the past 20 years. In the interest of brevity, this section will focus
on some of the key industry tests conducted over the years, and
how their results affected the direction of Pb-free research in high
reliability, harsh environments. Each test has extensive reports of
their own, but this paper will explain the scope of testing, show a
sample of results, and the key general takeaways.

NCMS Pb-free 1998 [47]

The National Center for Manufacturing Sciences (NCMS)
formed a consortium comprised of 11 industry OEMs, academic
institutions and national laboratories in 1998 to conduct one of
the first focused Pb-free solder alloy evaluations. The consortium
focused on three primary operating temperature ranges:

* -55°C to 100°C representing consumer and telecom electronics

* -55°C to +125°C representing military electronics

e -55°C to +180°C representing aerospace and automotive
electronics

The consortium conducted multiple screening tasks such as
toxicology, economics/availability and manufacturability as a down-
selection action prior to reliability testing. A total of 27 solder
alloy systems were selected out of 79 initial solder alloy candidates
being evaluated, with SnPb included for control and comparison
purposes. The Pb-free solder alloy testing was comprised of both

plated through hole (PTH) and surface mount technology (SMT)
test vehicles. Figure 8 and Figure 9 illustrate the NCMS study PTH
and SMT test vehicles.

Figure 9: NCMS Through Hole Test Vehicle [Copyright NCMS]

The primary reliability test methodologies used in the study were
thermal cycle and vibration. Thermal cycle testing was conducted
in accordance with the IPC-SM-785 (precursor specification to the
IPC-9701 specification). The vibration testing used the following
conditions:

e Input frequency = 140 Hz for SMT and 70 Hz for PTH test
vehicles

e Input g-levels = 6gs

* Duration = 120 minutes (@ room tempetature

e Stress reversals = one million for SMT and half million for
PTH test vehicles

The key take-aways from the test results were:

e -55 °C to 125 °C Thermal Cycle Testing: for the SMT test
vehicle, only the LCCC and 1206 chip resistor components
exhibited failures. The other component types — PLCC, PQFP — did
not register any failures after completing 5000 thermal cycles for
any solder alloy. Note: BGA was not tested in this effort.

e -55 °C to +125 °C Thermal Cycle Testing: for the PTH test
vehicle, the CPGA and CDIP components exhibited failures. The

Rafanelli, et al. 13
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other component types — PLCC and PDIP - did not register any
failures after completing 2000 thermal cycles for any solder alloy.

* Vibration Testing: for both the SMT and PTH test vehicles, only
the LCCC and PLCC components registered failures. The other
component types —, PLCC, CPGA, 12006 resistors, etc. - did not
register any failures after completing testing for any solder alloy. The
PQFP components did record lead fractures but not solder joint
fractures. Note, vibration part location dependent and this aspect
should be considered. For this particular assembly, component
location/position had a strong effect on time to first failure for
PLCC-84 and LCCC-44 devices. This fact should be considered as
part of the results from this study.

Figures 10-14 show a subset of the results from the NCMS study.

Table 2: Solder Alloy Composition Testing Legend

Legend

Al Sn63Pb37

A4 Sn95.5Ag3.5

A6 Bi52Sn48

E4 Sn95Ag3Bi2

F2 Sn96Ag2.6Cu0.8Sb0.5
F17 Sn91.8Ag3.4Bi4.8

F21 Sn77.2In20Ag2.8

F27 Sn95Ag3.5Zn1Cu0.5

08
08
07
06
05
04
03
02
01

20 70 30 E2] W0 0 500
Cycles

Figure 10: SMT Test Vehicle, Leadless Ceramic Chip Carrier (LCCC)

Component, 3 Parameter Weibull Thermal Cycle Results (-55°C to

+125°C) [Copyright NCMS]
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Figure 11: SMT Test Vehicle, 1206 Chip Resistor Component,
3 Parameter Weibull Thermal Cycle Results (-55°C to +125°C)
[Copyright NCMS]
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"A": RTV-SM Vibration Results for PLCC-84 Devices
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JCAA/JGPP Testing [41]

In 2002-2006 the National Aeronautical Space Agency (NASA)
and the Department of Defense (DoD) created a Pb-free solder
alloy group due to concerns that the potential banning of lead
compounds could reduce the supplier base and adversely affect
the readiness of missions. The Joint Council on Aging Aircraft
(JCAA)/ Joint Group on Pollution Prevention (JG-PP) PbOfree
Solder Project, a partnership between DoD, NASA and OEMs,
was created to examine the reliability of component solder joints
using various Pb-free solders when exposed to harsh environments
representative of NASA and DoD operational conditions. The
solder alloys selected for the project were:

* Sn3.9Ag0.6Cu (SAC) for reflow and wave soldering
* Sn3.4Ag1.0Cu3.3Bi (SACB) for reflow soldering

* Sn0.7Cu0.05Ni (SNIC) for wave soldering

* Sn37Pb (SnPb) for reflow and wave soldering

The Pb-free solder alloy testing evaluated both plated through
hole (PTH) and surface mount technology (SMT) using a specifically
designed test vehicle (Figure 15).
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Figure 15: Test vehicle with both plated through hole (PTH) and
surface mount technology (SMT) [Copyright SMTA]

The primary reliability test methodologies used were thermal
cycle, vibration and combined environments. The following sections
provide high level summaries of those test methodologies.

Thermal Cycle:

The thermal cycle testing used the following conditions:

* Testing conducted per IPC-9701 specification

* Temperature ranges of -55°C to +125°C and -20°C to +80°C

e Temperature dwells at maximum temperatures = 10 minutes
minimum

* Ramp rate between temperature dwells = 5-10 °C/minute

* Test monitored using event detectors

The key take-aways from the test results were:

* The SnPb and Pb-free solder alloys performed equally well with
most of the component technologies.

* Rework methodologies produced equal performance for the
SnPb and Pb-free solder alloys with no major changes in equipment
or techniques

* The introduction of SnPb finishes with Pb-free solder joints
resulted in a significant loss of solder joint integrity for a wide
number of component technologies

* The addition of bismuth in a Pb-free solder alloy provided
significant improve in solder joint integrity for some component
technologies

* When the bismuth containing Pb-free alloys were mixed with
SnPb, a very low melting tertiary alloy can form and significanty
reduced lifetime reliability in thermal cycle.

Figures 16-20 show a sample of the thermal cycling results from

the JCAA/JGPP study.
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Figure 16: -55°C to +125°C for TSOP Component, 4743 cycles
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Figure 18: -20°C to +80°C for CLCC Component, 5700 cycles
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Figure 19: Rockwell Collins -55°C to +125°C for BGA Component, 4743
cycles [Copyright SMTA]

.00 Weibull
SnPb/SnPb +—p#| [T s
90.00 W2 RRX - SRM MED
F=25 ) 8=0
I [BaPEnPD Rwl with Flux SnPo
SAGC305/ { el
50.00 SAGC405 sone
nd
b4 failures .
= at{11676
- cycles 'F SAC305/
# 9 SAC405
10.00 { rewpticed
f s
F C
5.00 s Ty
F failures
at 11676
CVC es Thomas A WooSrow
1.00 e 1708
1000.00 10000.00 100000.00

Thermal Cycles (-20 to +80 deg. C)

B1=14.0212, 11=6953.2528, p=0.9814
B2=8.9342, n2=8359.9217, p=0.9763

Key: Solder Alloy/Component Finish

Figure 20: Boeing -20°C to +80°C for BGA Component, 11,676 cycles
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o 55 Grms, maximum
* Solder joint integrity monitored with event detectors
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Figure 21: Combine Environments Profile [Copyright SMTA]

The key take-aways from the test results were:

» Component type had the greatest effect on solder joint integrity

* Solder joint alloy type had a major effect on solder joint integrity
within the component influence variable

* The impact of SnPb component surface finishes had a
significant impact of solder joint integrity
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Figure 22: Performance by Component Type [Copyright SMTA]

Vibration:
The combine environments testing used the following conditions:
* Vibration
o MIL-STD-810
* Solder joint integrity monitored with event detectors
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The vibration key take-aways from the test results were:

e Component type and location on the test vehicle had the
greatest effect on solder joint integrity with solder alloy contributing
as a secondary influence

Full Field Peak Strains at 72 Hz (1 G Sine Dwell)

Strain (X-direction)
=3
2

Figure 23: Vibration Test Vehicle Defection Data [Copyright SMTA]
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Figure 24: Vibration Results for BGA 225 Component [Copyright
SMTA]

NASA DoD Phase Il Testing [81]

In 2006 - 2010 the National Aeronautical Space Agency (NASA)
and the Department of Defense (DoD) created a follow on project
to the successful Joint Council on Aging Aircraft (JCAA)/ Joint
Group on Pollution Prevention (JG-PP) Pb-free Solder Project
completed in 2006. The solder alloys selected for the project were:

* Sn3.0Ag0.5Cu (SAC305) for reflow and wave soldering
* Sn0.7Cu0.05Ni (SNIC) for wave soldering
* Sn37Pb (SnPb) for reflow and wave soldering

The test vehicle was a slightly modified version of the JCAA/
JGPP test vehicle (Figure 25). The test vehicle construction, surface
finish and laminate variables were intentionally selected to allow for
minimally confounded test results compatrisons to the JCAA/JGPP
final results. The reworking of components was a primary variable
in the project.

Figure 25: Test vehicle used in NASA DoD Phase Il testing
[Copyright SMTA]

The primary reliability test methodologies used were thermal
cycle, drop shock and combined environments. The following
sections provide high level summaries of those test methodologies.
The acceptance criteria for all tests was to be better than or equal to
the performance of the SnPb controls.

Table 3: Test Vehicle Performance Requirements

Test Location Reference Electrical
Test
Combined Raytheon MIL-STD-810F | Electrical
Environments | McKinney, TX Method 520.2 | continuity
Test Procedure | failure
Thermal Rockwell Collins | IPC-SM-785 Electrical
Cycling Cedar Rapids, 1A continuity
failure
Drop Testing | Celestica JEDEC Electrical
Toronto, Ontario | Standard continuity
JESD22-B110A | failure

Thermal Cycle:

The thermal cycle testing used the following conditions:

* Testing conducted per IPC-9701 specification

* Temperature ranges of -55°C to +125°C

e Temperature dwells at maximum temperatures = 10 minutes
minimum

* Ramp rate between temperature dwells = 5-10 °C/minute

* Test monitored using event detectors

* 4068 cycles completed

The key take-aways from the test results were:

* There were no surprises in the PBGA-225 thermal cycle
test results. The test results demonstrated that mixed metallurgy
situations are non-optimal. An all SnPb or all Lead-free solder alloy/
component finish combination had a more consistent, predictable
final solder joint integrity result compared to a mixed alloy

Rafanelli, et al. 17
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solder joint configuration. The impact of mixed metallurgy solder
joints and the influence of reflow profiles on producing uniform
solder joint microstructures has been shown in other industry
investigations [8].

* The rework portion of the DOE matrix was severely scrutinized
prior to execution in an effort to minimize test result variation due
to the rework processes/procedutes. The “flux only” procedures
which are widely used industry atea array rework/repair procedures
were problematic for the lead-free BGA and CSP DOE parameter
segments. The poor petformance of several of the rework/repair
alloy/component finish combinations may be a maturity issue or a
process refinement issue but it is clear that additional rework trials
and process refinement are necessary in this area of Pb-free solder
processes.

e The solder alloy had a secondary effect on the solder joint
integrity test results. The SnPb solder alloy was generally more
reliable than the Pb-free solder alloy but the results did not preclude
their use in high performance electronics.

e The impact of Pb (lead) contamination on Pb-free solder
alloys can have a significant detrimental effect depending on the
component type, but especially in BGAs.
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Figure 26: TQFP-144 Weibull Plot for Immersion Silver PWB Finish
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BGA-225,
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Figure 28: PBGA-225 Weibull Plot for Inmersion Silver PWB Finish
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Combine Environments:
The combine environments testing used the following conditions:
* -55°C to +125°C
* Number of cycles = 500
¢ 20°C/minute ramp
* 15 minute soak
* Vibration for duration of thermal cycle
* 10 Grms, initial
* Increase 5 Grms after every 50 cycles
* 55 Grms, maximum
* Solder joint integrity monitored by event detectors

The key take-aways from the test results were:

* The component type was the dominate variable in the solder
joint integrity test results.

* The solder alloy had a secondary effect on the solder joint
integrity test results. The SnPb solder alloy was generally more
reliable than the Pb-free solder alloy but the results did not preclude
their use in high performance electronics.

* Reworked components, in general, had lower solder joint
reliability than non-reworked components.

* The impact of Pb (lead) contamination on Pb-free solder
alloys can have a significant detrimental effect depending on the
component type, but especially in BGAs.
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Figure 29: Weibull Plots of BGA-225 on Manufactured Test Vehicles
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Table 4: Comparison of Manufactured Test Vehicle Test Results to
2005 JCAA/JG-PP Lead-Free Solder Project Results

consortium investigated topics such as solder joint microstructure
evolution, solder joint aging, bismuth solid solution strengthening

Component | Alloy Finish 2009 Nf (10%) | 2005 Nf (10%) and precipitation hardening behaviors, tin whisker initiation/growth
BGA-225 SAC305 | SAC405 224 166" : P PRI . :
BGA 33% =Ac305 [ anfd Ve 6! behavior and‘soldér joint rehab1hty. Th? solder alloys 1nc1ud§d in the
BGA-225 SnFb SnPb 376 257 research are listed in Table 5 with the bismuth content ranging from
CLCC-20 SAC305 | SAC305 267 186° 3wt % - 7 wt.%.
CLCC-20 SAC305 | SnFb 237 268"
CLCC20 SnPb | SnPh 373 2965 N )
CSP-100 SAC305 | SACL0S 5367 347 Table 5: Solder alloys and composition used in the study
CSP-100 EnPb SnPb 539° 84 "
TQFP-144 SAC3I05 | Matte Sn 535 360° Gl Cou el ColEn:
TOQFP-144 SnPb Matte Sn 488 438 SAC305 Sn 3%Ag 0.5%Cu = Baseline
TSOP-50 SAC305 | SnPb 312 321
TSOP-50 SnPb SnPh 318 387 SnPb Sn 37%Pb ® Baseline

Senju M42 sn 2%Ag 0.75%Cu 3%ai | commercially Available

= Low Bi content
Drop Shock: - - R
. . . . . Violet Sn2.25%Ag 0.5%Cu 6%Bi = Top Performer in Vibration
The vibration testing used the following conditions:
Sunflower Sn 0.7%Cu 7%Bi = No Ag

* Shock testing will be conducted in the -Z direction

* 500Gpk input, 2ms pulse duration

e Test vehicles will be dropped until all monitored components
fail or 10 drops have been completed

The key take-aways from the test results were:

* Only the BGA components registered a significant number of
electrical failures

e The drop shock test did not provide results allowing for
differentiation between the solder alloys
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Figure 30: Number of drops to failure for the BGA-225 [Copyright
SMTA]

REMAP Pb-free Testing Program [82]

In 2014 - 2019 the Refined Manufacturing Acceleration Process
(REMAP) consortium initiated an extensive Pb-free solder
reliability program investigating the influence of bismuth as a SAC
solder alloy family constituent element addition. The REMAP

The REMARP test vehicle was 7.25 inches by 14 inches and 0.100
inches thick and it was fabricated from high Tg FR4 laminate. The
component population consisted of daisy chained 1156 1/O BGAs,
240 1/O QFPs, PLCC84s, SSOP48s and SOL.20s.

ey
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BGA_2 BGA_1 BGA_ 1 BGA 2 H

Figure 31: Remap test vehicle [Copyright REMAP]

The primary reliability test methodologies used were thermal
cycling per the IPC-9701 specification, vibration and combined
environment (1M vibration cycles plus 1000 thermal cycles) testing.
Testing was conducted at different temperatures (i.e. 25C, 75C,
125C) to allow for data modeling. The results of the combined
environments testing is shown in Tables 6, 7, and 8. The primary
contribution of the REMAP consortium was to providing a full
understanding of how bismuth constituent additions to a SAC
solder alloy influence solder joint reliability.

Rafanelli, et al. 19
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Table 6: Experimental runs at 125°C for BGA and PLCC failure times in
1000 time cycles (Note: cycles in thousands)

Paste type SAC305 | Violet | SnPb |SAC305
Temp (C) 125 125 125 125
Strain (ue) 375 375 300 300
Avg InputGlLlevel | 16 1.8 0.9 0.9
Surface Finish ENIG | ENIG | ENIG | ENIG
Serial # 37 60 15 39

TOTAL CYCLES 1,080 K| 925K | 1,620 | 1,300K
e Y S e s |

U1 BGA 392 118 1130 340
U201 BGA 608

Uz pLCC +*1130

Ug PLCC 854 >1130

U9 PLCC 238 356 >1130 343
U101 BGA 677 739 855

U200 BGA

U107 PLCC 207 910

U108 PLCC

U109 PLCC 595 393 393

Table 7: Experimental runs at 75°C for BGA and PLCC failure times in
1000 times cycles. (Note: cycles in thousands)

Paste type SAC305| SnPb | Viclet [SA€305| snPb | Vielet
Temp (C) 75 75 75 15 75 75
Strain (ue 375 375 375 300 300 300
AvE Input G Level 20 1.6 1.5 1.1 13 1.2
Surface Finish ENIG ENIG ENIG ENIG ENIG ENIG
Serial # 48 17 65 44 18 61
TOTAL CYCLES BI3 K | 1572 K 5ﬁsn K |4,988 K sioqo K [10,000 H
U1 BGA 811 161 | 1,005 555

U201 BGA

U7 PLCC 201

U8 PLCC

U9 PLEC 523 201 | 3,255 | 1,922 |»5,850

U101 BGA 601 510 3,850

U200 BGA

U107 PLEC 1,130 1,800 |~7,230
U108 PLCC ~ 7,220
U100 PLEC 412 3,364 | 2,660 [~7230

Table 8: Experimental runs at 75°C for BGA and PLCC failure times in
1000 times cycles. (Note: cycles in thousands)

Paste type SAC305 |SACI05| SnPb | SnFb | wiclel |SAC303
Temp [C) 25 25 25 25 25 25
Strain (ue) 450 375 375 375 375 300
Avg Input Glevel | 25 2.1 19 15 18 1.0
Surface Finish ENIG | ENIG | ENIG | ENIG | ENIG | ENIG
Sorial # ] 52 14 23 | 6B(P) | 47
TOTAL CYCLES 1,231 K| 1,255 K| 2,210 K[ 1,502 K| 2,972 K|5,161 K
U1BGA s78 [ 1,222 [ 162 | 534

Li201 BGA 782

L7pLCC

LgPLCC 393

Lo pLCC 288 | 1,170 | s06 | 1280

U101 BGA 1,000 | 754 500

1200 BGA

U107 PLCC 1.010

U108 PLCC

U109 PLCC 383 431 1,279

The key takeaways from the test results were:

* Just bismuth as an additive do not make up for the removal of
silver.

* Increasing bismuth content in SAC based alloys improves
performance generally.

* The different temperatures provided a significant portion of
data for the modelling community to improve Pb-free models.
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iINEMI Pb-free Testing Program [11]

In 2008 — 2019, the International Electronics Manufacturing
(iINEMI), a not-for-profit, R&D consortium of
approximately 90 leading electronics manufacturers, suppliers,

Initiative

associations, government agencies and universities initiated an
extensive - solder reliability program. The overall tenants of the
program were to: (1) help manage the supply chain complexity
created by alloy choices, (2) address reliability concerns and,
(3) highlight the opportunities created by the new Pb-free alloy
alternatives. Specific goals in the early years of the program
included:

 Assess existing knowledge and identify critical gaps related to
new Pb-free alloys. Provide technical information to the industry
that will make selection and management of alloys easier.

* Raise awareness of this information through publication and
presentation of findings.

* Propose a methodology and set of test requirements for
assessing new alloys.

* Work with industry standards bodies to address standards that
require updating to account for new alloys.

The solder alloys investigated in the program were initially the
SAC solder alloy family include SAC405, SAC396, SAC387 and
SAC305 systems. Further work progressed into the SAC205,
SAC105 and other commercial solder alloy systems that contained
lower silver constituent additions. Topics such as isothermal
preconditioning, solder joint microstructure evolution, Pb-free
solder alloy mixed alloy reliability and the impact of extended dwell
time were investigated. The iINEMI consortium followed industry
solder alloy evolution with continued investigation of Pb-free
solder alloys that utilized a variety of element constituent additions
such as manganese, bismuth, antimony and indium. The following
section highlights some of the critical results produced in the
iNEMI Pb-free solder reliability program.

The use of a standardized test vehicle by the iNEMI Pb-
free solder reliability program allowed for continuous learning,
comparison and validation of test results over the course of
time. The test vehicle was 2.36 mm (93 mils) thick, with a 6 layer
construction with 16 sites for a large daisy chained 192 I/O chip
array BGA (192CABGA), and another 16 sites for a smaller daisy
chained 84 1/O thin core chip array (84CTBGA) (Figure 32). The
attributes of the components and PCB are provided in Table 9.
The test vehicles were fabricated with a variety of different high
temperature PCB laminate materials such as Panasonic R-1755V
and Hitachi MCL-E-679FG, and different surface finishes such as
Entek HT organic solderability preservative (OSP) and electroless
Ni/immersion Au (ENIG).
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Figure 32: iINEMI test vehicle and components
[Copyright iINEMI]

Table 9: Attributes of the components and PCB

BGA Package Attributes
Designation 192CABGA 84CTEGA
Die Size 12x12 mm x5 mm
Package Size 14x14 mm T/ mm
Ball Array 16x16 12%12
Ball Pitch 0.8 mm 0.5 mm
Ball Diameter 0.46 mm 0.3 mm
Pad Diameter 0.381 mm 0.3 mm
Pad Finish Electrolytic NilAu  |Electralytic NilAu
Au thickness 0.6 pm 0.6 pm

PCB Attributes

Dimensions 168 w178 x 236 mm
Laminate Panasonic R-1765V or Hitachi MCL-E-67T9FG|
Surface Finish Entek HT OSP or EMIG
Mo. Cu Layers [
Pad Diameter 0.356 mm 0.254 mm
Solder Mask Dia. 0.483 mm 0.361 mm
Laminate Panasonic R=1753V |Hitachi MCL-E-679FG
Glass Transition 165 °C 165 °C
Temperature, T,
Decomposition 150 °C 240 °C
Temperature, T,
Reom Temperature
Sterage Madulus 116 Gpa 18GPa

The primary reliability test methodologies used was thermal
cycling per the IPC-9701 specification because of the large
number of solder alloy systems/combinations being evaluated.
An understanding of the impact of silver as a constituent addition
was published demonstrating the coarsening rate temperature
dependence of Ag.Sn intermetallic phase was an output of the
early investigations. Figure 33 and 34 illustrates the impact of the
different temperature cycle regimes on both high and low silver
content of Pb-free solder alloy systems.
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Figure 33: Characteristic life as a function of thermal cycling regime
with 10 minute dwells [Copyright INEMI]

CABGA192
2000
% 4= 51-37Pb/Sn-37Pb
7 6000 ¢ . - ]
% <00 WS NI00C/SNIT
' —a—SN100C/SAT30
% 4000 OOC/SAT305
= 3000 | —— S ACI30T/SAC30S
£ 2000 ——SACKUB0T/SACI0S
% 1000 - —o—SACI0S+NUSAC30S
g
2 o : - | ——SACIOS+Mn/SAC30S
» o® éj‘-“ W ——sAC105/8AC305
,,\“9; R }@T? SACLO7/SAC305
b1 5 {.\.
& & ——SACI0S/SATI0S

Figure 34: Characteristic life as a function of thermal cycling regime
with 10 minute dwells [Copyright INEMI]

The introduction/evolution of the SAC solder alloy family with
new clemental constituent additions such as manganese, bismuth,
antimony and indium by solder alloy suppliers was evaluated as
an understanding of what metallurgical considerations such as
solid solution strengthening and precipitation hardening could
provide in terms of alloy creep resistance was realized. Table 10
illustrates the wide range of solder alloys/compositions comprised
the investigations. Figure 35-38 lists the 192CABGA thermal cycle
data illustrating how the various elemental constituent additions
interacted with the various thermal cycle regimes. The iINEMI
consortium testing revealed that different solder alloys could be
matched with different environment conditions — the belief that
one solder alloy would suffice for all product use environments was
no longer valid and that custom solder alloy application could be a
valid consideration for product design teams emerged.
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Table 10: Solder alloy and compositions involved in the iINEMI testing

Probability - Weibul
MNominal Composition (wi. %) Melting = b
Alloy Sn | Ag [Cu|Bi[Sb] In]| other |Range.-C b i !
SACI05 965 30| 0.5 217-231 i
Innolot 913 35| 0.T|30{15 012 Mi 206-218 I
HT 950 25|05 2.0[Md 206-218 |
MaxFel Plus | 91.9| 4.0 [ 0.6]3.9 212-220 i j ;
794 837 34 | 0.7]32[(30 Mi 210-221 = ':‘ |
TG 932 30| 0&)30 i 205-215 g
SHEMX B92 36| 0B|0A RO 202-206 ' ‘.’
Vinlat O1.26)/ 2 26( 06|60 205-215 e
Indalloy 272 ap0| 38| 1.2[(146[(38 MB-1I6 i /e
Indalloy 277 830 38 |0 T|0A[36)26 214-233 ,,ri
Indalloy 273 593 36|09 58|08 221-226 - <
LF-C2 9245 345 1.003.0 2086-213 | f,-"
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| Figure 36: Weibull distribution plots for the 1992CABGA package and
| SAC 305, Indalloy 272, Indalloy 277 , and Indalloy 279 tested with the
| -55°C/125°C thermal cycling profile. [Copyright SMTA]
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Figure 37: Weibull distribution plots for the 1992CABGA package and
SAC 305, Indalloy 272, Indalloy 277 , and Indalloy 279 tested with the
-40/125 °C thermal cycling profile. [Copyright SMTA]
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Figure 38: a) Summary of accelerated temperature cycling failure
statistics for the 192CABGA with SAC305 and the five Pb-free high
reliability solder alloys. b) Bar charts comparing the characteristic
lifetimes (N63) for the 192CABGA with SAC305 and the 5 high
reliability solder alloys tested using 0/100°C, -40/125°C, and
-55/125°C thermal cycling profiles [Copyright SMTA]

Academic Research Centers Pb-free Testing

This paper would be orders of magnitude larger if every
industry and individual company program contributions to the
understanding/evolution of Pb-free solder alloys were detailed.
However, three university affiliated research centers: Center for
Advanced Life Cycle Engineering (CALCE), in conjunction with
the University of Maryland, the Center for Advanced Vehicle
and Extreme Environment Electronics (CAVE3) in conjunction
with Auburn University and Advanced Research in FElectronics
Assembly (AREA) in conjunction with Binghamton University have
contributed hundreds of detailed investigations on the topic of Pb-
free solder [96-98]. The investigation results assisted significantly in
the understanding/evolution of Pb-free solder alloys.

RELATIONSHIP OF HIGH PERFORMANCE SOLDERS
TO A & D REQUIREMENTS

The term acronym “A & D” refers to Aerospace, Defense, and
High-Performance products and represents the sphere of operation
for aerospace and defense products.

A & D products are expected to work in harsh conditions,
specifics of these being dependent on the associated industry. Given
that there are multiple A & D industries (e.g: telecom, commercial
aerospace, automotive, defense), this section will discuss the defense
service conditions and environments. (Note that a similar approach

can be used for the other A & D groupings).
the possibility of high-performance solders operating in defense
products, it would be beneficial to discuss the challenges that Pb-
free solders may present.

Before evaluating

Challenges of Pb-free in High Performance Products/
Systems

The challenges of using Pb-free materials in defense products
has been well documented [83, 84].
performance and long-term reliability of Pb-free interconnections
(i.c. solder joints) and deleterious effects of tin whiskers. (Figures
39 and 40 illustrate the concerns.) For more than fifty-years, A & D
utilized eutectic (635n37Pb) and near-cutectic (60Sn40Pb) solders
With an established
benchmark for performance, the concern with new materials is

justified.

In general, the concerns are:

in interconnections and plating/finishes.

Figure 39: A Pb-free solder joint can fail earlier than a SnPb solder
joint when subjected to mechanical vibration or shock in the field
(courtesy of Dr. Craig Hillman, DfR Solutions.)

Columnar

(a) (b)
Figure 40: Examples of whiskers observed in CALCE (University of
Maryland) experiments. a). Needle-like whisker structure,
b). Columnar-like whisker structure. (Courtesy of Center for
Advanced Life Cycle Engineering [CALCE])

Focusing on the first concern, the challenge is finding Pb-
free solder materials that can withstand four major service/
environmental conditions:  thermal cycling (-55C to +125C),
thermal shock (-55C to +125C), vibration (e.gz MIL-STD-810F,
Method 514.5), and mechanical shock (e.g. MIL-STD-810F, Method
516.5 and/or MIL-S-901). The tin-silver-coppet alloy SAC 305 has
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been comparable to eutectic SnPb for thermal cycling although
there are still some concerns with SAC 305 behavior at the
temperature extremes of -55C and +125C. Figures 41a and 41b
present two interpretations of this concern.
the undesirable mechanical properties and the potential occurrence

Another concern is

of solder joint surface cracks and other production-related defects
and issues (e.g,, head-on-pillow, pad-cratering) [85].
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Figure 41a: Larger delta T (indicative of thermal cycling) favors SnPb
solder (courtesy of C. Hillman, DfR Solutions)
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Figure 41b: Presenting the thermal cycling comparison from a
percentage strain aspect (courtesy of M. Osterman, University of
Maryland Center for Advanced Life Cycle Engineering)

Regarding vibration and shock, use of SAC105 alloys has shown
improvement compared to SAC305 but still not comparable to
eutectic tin-lead. Tin-bismuth alloys have currently been objects of
numerous openly published studies but the inherent brittle nature
of bismuth is challenge to overall industry acceptance [86].

Sources of the Challenges: The DoD “World"

The US. Department of Defense (DoD), National Institute
of Standards and Technology (via Federal Standards), and several
industry organizations (AIA, IPC, SAE, etc.) have been the source
of most standards and specifications governing use of products
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and equipment in harsh environments.  DoD programs have
historically relied on military and federal standards/specifications
to provide necessary diligence and guidance in the development
and evaluation of products and systems required to function
under severe, battlefield conditions. The implementation of
these standards /specifications into the design/manufacture of
The “mil-spec”
designation usually refers to a product’s ability to withstand and

defense products has been coined as “mil-spec”.

combination of 1 thermal cycling, thermal shock, mechanical
vibration, and mechanical shock conditions (although additional
harsh conditions such as sand, dust, fungus, etc. can also be grouped
here). Sourcing the origins of these requirements and their limits
has been an interesting exercise in “mil-spec” archeology. Some
of these standards/specifications ate (but not limited to) MIL-
STD-202, MIL-STD-2036, MIL-STD-810, MIL-STD-883, and
MIL-DTL-901.

Table 11 provides a summary (but not all inclusive) of the
origination of the “infamous mil-spec” requirements typically used
to qualify defense equipment.

Table 11: Harsh Condition Requirements for Military Applications
(some A & D as well)

Requirement | Requirement Source Purpose

Name

Thermal - 55C to +125C Method 1010.9 of | Life Test

Cycle (Test Condition B) | MIL-STD-883-1

Thermal 55C to +125C (Test | Comes from Service

Shock Condition B) Method 1011.9 of | Condition

MIL-STD-883-1

Mechanical | Peak g-level MIL-STD-883-2, | Service

Shock ranges from 500 Method 2005.5 Condition

(component | (Pulse duration

level) 1.0 ms) to 30000
(Pulse duration of
012 ms)

Mechanical | Pre-defined pass/ | MIL-DTL-901E Service

Shock (high | fail criteria when (formerly MIL-S- | Condition

impact, subjected to one of | 901E)

shipboard several class shock

systems) loads with further
categorizations
based on combat
capability,
dependency of
mountings, and
test item hierarchy.

Vibration Fatigue and MIL-STD-883-2, | Service
Variable Frequency | Method 2005.2 Condition
peak ranges from | for fatigue
acceleration levels | vibration; MIL-
of 20 g'sto 70 g's | STD-883-2,

Method 2007.3
for variable
frequency
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As Pb-free materials have presented their own set of challenges,

the defense industry has turned to industrial resources to aid in the

evaluation/qualification of these materials. Table 12 presents a
summary (but not all-inclusive) of these standards/specifications.

Table 12: Harsh Condition Standards/Specifications From Industry
(i.e. Non-Military Sources)

Requirement | Requirement | Source Purpose
Name
Thermal Can range JESD22- To determine the ability
Cycle from -55C | A104E of components and
solder interconnects to
to +150C Temperature | ithstand mechanical
dependent Cycling stresses induced by
upon test alternating high- and low-
condition temperature extremes
Thermal Can range IPC-TM-650 | Conducted for purpose
Cycle from -65C to | 2.6.6 of determining resistance
of material such as a
+125C Temperature | jaminate or multilayer
Cycling circuit board, to the shock
PWBs of repeated exposures
to extremes of high
and low temperatures
for comparatively short
periods of time.
Thermal 0C to +100C IPC-9701 Establishes specific test
Cycle -25C to +100C | performance methods to evaluate
-40C to +125C | Test performance and
_55C to +125C reliability of surface mount
Methods solder attachments of
-55C to +100C electronic assemblies with
inclusion of performance/
reliability levels to rigid,
flexible, and rigid-flex
assemblies. Relates
results to reliability in
environmental and use
conditions as well.
Vibration G-levels JESD22- Intended to evaluate
can vary B103B.01 component(s) for use in
X R electrical equipment
from 6.27 Vibration,
down to 0.06 | Variable
(dependent | Frequency
on service
conditions)
Drop Shock' | Shock levels | IPC-TM-650 | This method is to
of at least Test No. determine the electrical
) performance of multilayer
150 G's 2.6.5 DI’Op printed wiring boards by
Shock following the shock with
an electrical continuity
test as specified.
Drop Shock' | Peak shock | JESD22- Evaluation/comparison
level 1500 B111A of drop performance
) of surface mount
G's Board Level electronic components
Drop Test for handheld electronic
Method of product applications
c t in an accelerated test
omponents environment, where
for excessive flexure of a
Handheld circuit board causes
Electronic product failure
Products

! While not considered a military or acrospace test, its prominence

in Pb-free testing and evaluation may warrant drop shock as an

alternative and cost-effective method to assess low-level shock

performance as a “first-start” in qualifying Pb-free solders.

Presenting Tables 11 and 12 has several purposes. First, these
tables simply answer the question “Why are we testing to these
parameters” and “Where did these requirements come from”. For
many yeats whenever mentioning thermal cycle and/or thermal
shock, inevitably the phrase “-55C to 125C” is included in the
conversation, we now know the source of these requirements.
Second, Tables 11 and 12 provide resources for supporting adequate
designs and implementation plans to meet these requirements.
Third, the data in these tables can help customers and contractors
work together to analyze system requirements and assess realistic
expectations.

The Impact of COTS and Low-Cost Solutions

Traditionally, acquisition of defense products and systems
were expensive due in part to a combination of the following
factors: 1) requirement to operate in severely harsh service and
environmental conditions and, 2) strict procedures & processes
warranting government oversight. These factors directly affected a
constantly increasing DoD budget each year resulting in push-back
from Congress and reflecting the frustrations of its constituents.
Recognizing the need to reform skyrocketing costs, in June 1994 the
US. Secretary of Defense, Dr. William Perry, issued his “Mandate
for Change” memorandum [87]. The memo directed the armed
forces to purchase Commercial-Off-The-Shelf (COTS) products
“to the extent possible” rather than from traditional defense
suppliers thereby instituting a philosophical change from purchasing
It was estimated that
over 30,000 military specifications and standards were the cause
of inflating the cost of military items. To this day, the spirit of
the mandate continues, and electronic components comprise a
large portion of the COTS items acquired by A&D companies.
Subsequently, COTS items are subject to market trends (e.g new

“mil-spec”" grade components and parts.

materials, increased technology updates, no requirement for change
notices, etc.) and consequently, A&D OEMs must address such
challenges in their designs to meet performance requirements.

Despite these challenges, COTS still provide a more affordable
solution to lower cost A&D systems. While the initial reaction to
industrial/commercial standards and best manufacturing practices
may be dismissed by many, one cannot help but think that COTS
items, in general, must be of high quality as the worldwide consumer
community has a greater influence over company success than all
the aerospace/defense organizations combined.

Adapting A & D Requirements to COTS and Pb-free
Integration

Presently, there are no validated high-performance reliability
models for Pb-free electronics [99, 100]. However, it is possible to
execute some conservative approaches to design/implementation
and testing to meet performance requirements.

From a design and implementation perspective, IPC-PERM-2901
“Pb-free Design & Assembly Implementation Guide” provides
resources for designers forced to use Pb-free solders and finishes
in their products [88].
performance under severe service and environmental conditions

Mitigating the concerns with Pb-free
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are presented in three high-level strategies: The first approach
focuses on ruggedization which for a COTS assembly might
include a) component underfills, b) shock hardening a chassis or
card guide, ¢) any other mechanical/physical attribute to ward off
harsh effects. Note that this approach will result in a modified
COTS item, or MOTS as known in the industry. A second strategy
is the concept of “aggressive” preventative maintenance in which
additional spares of COTS items would be purchased as part of
an acquisition plan such that in-service units would be “swapped
out” after a pre-determined period and replaced with spares. The
swapped-out units could then be analyzed for various reliability
The data
could be used to bolster eventual reliability modeling for that
COTS item or family of items. This scheme could be expanded to
develop some prognostic & health maintenance (PH&M) tools for

attributes, e.g. remaining life, impending failure, etc.

monitoring Pb-free products during operation. The final strategy,
implementation, is the simple concept of use limitation which is
Design
data (drawings, specifications, etc.) of a sub-system or system

the concept earlier mentioned on realistic expectations.

(assuming either one includes COTS) would include restrictions on
use conditions and storage environments of the system. Examples
of these restrictions would include a) use of item only in a shock
hardened enclosure/shelter and b) no storage in an uncontrolled
environment (temperature, humidity, sunlight, etc. or combination
thereof).

Utilizing test as a means to validate performance and reliability of
Pb-free products is considered to be in its “infancy” stages primarily
due to immaturity of reliability models. The immaturity component
refers to the lack of plentiful data to validate such models. Using
traditional reliability approaches for Pb-free is risky due to the
inherent differences between Pb-free and eutectic/near-eutectic
SnPb solders. Material differences can include mechanical creep,
aging effects, homogeneity, etc. which would affect acceleration
factors as well as other key modeling parameters. Given the many
families of Pb-free solders, the magnitude of differing properties
A wotk-around is to test COTS
products at the “macro” level to assess specifically desired results.
In other words, the first step would be to decide on what kind of
data/parameters are desired, then design a test based on those

becomes a large challenge.

outcomes, and finally execute the test. A simple example of this
approach would be as follows: If a COTS assembly is required
to withstand mechanical shock or vibration, then a production
version of that item should be subjected to that specific test. If the
COTS item is required to function over a relatively long period of
time, then a production version of the item should be subjected to
an operational test over some pre-determined fraction of the life
using conservative acceleration factors based on general scientific
principles. Engineering may be required to determine if additional
conservancy is needed based on application. GEIA-STD-0005-3
is an effective resource to use for testing Pb-free products and
systems [89)].

In summary, making COTS/Pb-free-built products compliant to
A & D requirements will require the following:

26 Rafanelli, et al.

* Review and understanding of published resources addressing
Pb-free and Pb-free risk mitigation such as the suite of standards
and documents as listed in Table 13

* Use all resources that address and support general hardware
reliability testing while using sound engineering judgment to decide
on key parameters such as activation energies, constants, models,
etc. Note that lack of a Pb-free reliability strategy should not
prevent good engineering of a specific reliability test or, better yet,
life test.

e The availability of assets to test (testing is preferred over
modeling as there is little confidence in the latter at this time)

Therefore at this time, incorporating A & D requirements to
COTS/Pb-free requites sound engineering assessment and action
before implementation.

SUMMARY AND CONCLUSIONS

This paper has provided a chronological narrative of a) the
onset of Pb-free electronic materials in the supply chain, b) A & D
industry’s struggles to respond to the challenges, and c) the lengthy
but deliberate efforts to develop mitigations and solutions.

The onset included the early warnings circa 1995 of impending
global regulations [90, 91] of hazardous substances (element Pb not
withstanding) and A & D reliance on the exclusions from 2006 to
the present. However, despite exclusions, the global supply chain
aligned with the European Union resulting in a shift from readily
available SnPb solder to SAC, SnC100, and a plethora of other Pb-
free materials becoming the commercially available choice. Now,
with the threat of elemental Pb becoming a RoHS Authorized
substance, continuous acquisition and use of SnPb would become a
customized purchase. The lesson learned here: never underestimate
the influence of global trends on the supply chain no matter how
critical the product end use.

Fortunately, the A & D struggles with response to challenges
overcame the initial stages of denial [92-95] and in 2004, the DoD,
along with several industry and academia groups, formed the Lead-
Free Electronics in Aerospace Project (LEAP) which transformed
into today’s IPC PERM (Pb-free FElectronics Risk Mitigation)
Council. The PERM has, and continues to, provided awareness
and resources to help A & D work with Pb-free materials providing
a forum for the open exchange of ideas and tools to help comply
with customer requirements.

Efforts to develop mitigations and solutions have included:

* The work of the IPC PERM Council in generating a set of
document tools (Table 10)

e Several stages of the Lead-Free Manhattan Project which is an
industry collaborative funded by the US DoD to baseline the state
of Pb-free knowledge and develop a roadmap to close gaps

* Pockets of independent research by consortia and academia
attempting to close some of the gaps

* The DoD-funded Defense Electronics Consortium Pb-free
pilot program which will accelerate adoption of new solders, reduce
supply chain risk, and modernize defense electronics
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Table 13: IPC Developed Suite of Tools for Pb-free Risk Identification
and Mitigation

* GEIA-STD-0005-1 "Standard for Managing the Risks of Pb-
free Solders and Finishes in ADHP Electronic Systems”

* GEIA-STD-0005-2 “Standard for Mitigating the Effects of Tin
in Aerospace and High Performance Electronic Systems”

* GEIA-STD-0005-3 “Performance Testing for Aerospace and
High Performance Electronics Containing Pb-free Solder and
Finishes”

* GEIA-HB-0005-1 “Program Management / Systems
Engineering Guidelines for Managing the Transition to Pb-
free Electronics”

* GEIA-HB-0005-2 “Technical Guidelines for Aerospace and
High Performance Electronic Systems Containing Pb-free
Solder”

* GEIA-HB-0005-3 “Rework and Repair Handbook To Address
the Implications of Pb-free Electronics and Mixed Assemblies
in Aerospace and High Performance Electronic Systems”

» IPC/PERM 2901 ‘Pb-free Design & Assembly Implementation

Guide”

A thorough discussion on the evolution of solder alloys and
the methodology has been provided in this paper so that future
alloy developments can be likewise categorized, characterized, and
assessed for specific applications. A solid summary of performance
data for these solder families has been provided for use in not only
direct design applications but to guide in assessing new families of
Pb-free solders to address mission needs. Finally, some insight into
the use and call-outs of military standards and specifications has
been presented to help understand the nature and origins of A&D
performance requirements encouraging the use new paradigms [84]
in meeting those requirements.

In conclusion, Pb-free materials are here to stay. Despite
trepidations in the 1990%, dedicated and deliberate efforts have
vastly improved the ability to adopt these alloys and finishes in many
applications. There are still several instances (space, missiles, i.c.
very high reliability conditions) which will still require SnPb for the
foreseeable future. However, an increasing resource and database is
available that will allow the “engineering” of products and systems
to meet performance requirements for a variety of application areas.
Those unknown application areas are well on the way in acquiring
the data and resources to engineer the solution.

This document does not contain technology or technical data
controlled under either the US. International Traffic in Arms
Regulations or the U.S. Export Administration Regulations.
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